The timing of vaccination can influence immune protection, yet the molecular processes translating time of day into long-term immunity remain poorly understood. This project explores how circadian physiology shapes early immune activation and downstream responses after vaccination in humans and mice.

The early immune events converting vaccination timing into protective immunity are largely unknown.
Circadian regulation at the time of antigen exposure programs innate and adaptive immune responses.
We will dissect time-of-day–dependent immune activation using time-resolved single-cell, spatial, and cytometric analyses in mice and humans.
June 30, 2024
Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens—chrono-immunotherapies—that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.
May 23, 2024
The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.
October 31, 2025
Adoptive cell therapies (ACTs), such as chimeric antigen receptor (CAR)-T cell therapy, have revolutionized cancer treatment, especially for hematological cancers. However, patient responses vary considerably. Emerging research reveals a striking influence of time of day (ToD) on ACT efficacy. Administering ACT during the early behavioral active phase enhances tumor control and reduces toxicity in preclinical models, an effect linked to the circadian clock. Latest clinical data also point to ToD effects in the cancer setting. In this opinion article we explore current insights and discuss the emerging underlying mechanisms. We propose that integrating ToD into clinical practice could represent a powerful yet easily implementable therapeutic regimen to improve efficacy and safety of ACT.