Lilian Jo Engelhardt

Clinician Scientist

Charité

The projects of

Lilian Jo Engelhardt

C01

Detecting

Targeting

Individualized data-driven light intervention in intensive care unit patients

Circadian rhythms are often disrupted in critically ill patients, worsening outcomes. Non-invasive detection and normalization in the ICU are not yet implemented. This project integrates high-resolution patient data with dynamic light therapy to restore circadian rhythms.

Individualized data-driven light intervention in intensive care unit patients

Circadian rhythms are often disrupted in critically ill patients, worsening outcomes. Non-invasive detection and normalization in the ICU are not yet implemented. This project integrates high-resolution patient data with dynamic light therapy to restore circadian rhythms.

The publications of

Lilian Jo Engelhardt

Detecting

Targeting

Distinct diurnal temperature rhythm patterns in critical illness myopathy: secondary analysis of two prospective trials

October 27, 2025

Background: Critical illness myopathy (CIM) increases mortality and causes long-term disabilities. CIM is characterized by reduced muscle excitability, muscle atrophy, weakness, and impaired glucose metabolism. Functional circadian rhythms are important for skeletal muscle homeostasis. Circadian rhythms are often disrupted during critical illness in the Intensive Care Unit (ICU). This analysis investigates whether diurnal temperature rhythms differ in critically ill CIM compared to no-CIM patients.

Methods: This is a secondary analysis of two prospective trials including critically ill patients with CIM (n = 32) or no-CIM (n = 30) based on electrophysiological tests. Diurnal body temperature rhythms were compared between CIM and no-CIM groups in reference to n = 16 participants included in a bed rest study. Cosinor analysis was performed to determine the rhythm parameters and classify into rhythm classes. Aggregated and longitudinal data were compared between groups using non-parametric tests. Rhythm parameters were correlated with muscle atrophy, weakness and insulin sensitivity.

Results: CIM and no-CIM patients had severe multiorgan failure (median SOFA score 12 in both groups, p = 0.39). The temperature rhythm nadir timepoint was shifted in CIM patients (10:43 [09:21, 12:22]) and no-CIM (11:12 [09:43, 13:30]) compared to the healthy bed rest group (5:03 [3:22, 6:36]) p < 0.001. CIM patients showed lower temperature rhythm mesors than no-CIM patients (p = 0.041). The temperature rhythm amplitude was lower in both CIM and no-CIM patients compared to the healthy bed rest group (CIM: 0.3 °C [0.2, 0.4]; no-CIM: 0.2 °C [0.2, 0.3]; healthy bed rest: 0.5 °C [0.2, 0.6]; p < 0.01). Compared to no-CIM patients, CIM patients had higher temperature rhythm amplitudes (p = 0.021) and showed a less pronounced reduction in temperature rhythm amplitudes during ICU stay (p = 0.017). A higher temperature rhythm amplitude correlated negatively with M. vastus lateralis myocyte cross-sectional area.

Conclusions: Heterogeneous phase shifts of diurnal temperature rhythms in CIM and no-CIM groups compared to healthy bed rest volunteers may indicate ICU-related circadian disruption. Suppression of temperature rhythm amplitude during ICU stay could represent an adaptive response to this disruption. Blunted amplitude suppression observed in CIM compared to no-CIM patients might reflect reduced adaptation, potentially contributing to muscle catabolism. This hypothesis-generating analysis underlines the need for mechanistic studies exploring circadian regulation in skeletal muscle during critical illness.

Keywords: Body temperature; Circadian rhythm disruption; Circadian rhythms; Critical illness; Critical illness myopathy; Diurnal rhythms; Muscle weakness; Skeletal muscle atrophy; Temperature rhythm.

Detecting

Targeting

Challenges and Recommendations for Integrating Circadian Medicine in Critical Care: A Roadmap

December 20, 2025

Background: Circadian rhythms are often severely disrupted in critically ill patients in the ICU. The ICU environment, characterized by irregular light-dark signals, continuous nutrition, and round-the-clock interventions, contributes to this disruption by providing weak and conflicting timing cues to the circadian system. Extensive scientific research has demonstrated that circadian rhythms play a vital role in regulating physiology and maintaining overall health. Therefore, integrating circadian principles into critical care may represent a promising strategy to improve patient outcomes in the ICU.

Research question: What are the key challenges of integrating circadian medicine into critical care, what steps can address these challenges, and which recommendations can guide future study designs and clinical implementation?

Study design and methods: We convened a 5-day workshop in September 2024 that brought together 24 international experts with backgrounds in circadian biology, critical care, and implementation science. Each day was organized around a predefined theme, with morning presentations and plenary discussions, and afternoons dedicated to drafting a list of Propositions and Recommendations in breakout groups. Propositions and Recommendations were finalized via a post-workshop survey requiring ≥ 75% agreement.

Results: This roadmap summarizes the discussions and outcomes of the workshop, structured around a set of Propositions and Recommendations, and provides a framework for building a robust evidence base for integrating circadian principles into ICU practice. Key recommendations include the development of circadian outcome measures tailored for use in the ICU and using standardized frameworks for evaluating the effect of circadian interventions in clinical trials.

Interpretation: Altogether, this roadmap provides an interdisciplinary framework resulting from a collaborative effort of ICU clinicians, circadian biologists, and implementation specialists, for building a robust evidence base for integrating circadian principles into ICU research and practice.

Keywords: ICU; circadian rhythms; critical care; critical illness; meeting report.