B04

Chronotherapy of metabolic dysfunction-associated steatotic liver disease (MASLD)

MASLD is prevalent and a major risk factor for cirrhosis and liver cancer. Exercise is effective but limited by compliance. This project investigates how exercise timing interacts with hepatocyte circadian clocks to affect metabolism and MASLD progression.

Problem

Mechanisms by which circadian clocks modulate MASLD and how timed exercise can optimize therapy remain poorly understood.

Concept

Hepatocyte clocks gate metabolic pathways, and synchronizing exercise with circadian timing may enhance therapeutic efficacy.

Aim

We will examine timed exercise effects on liver metabolism and MASLD in mice and humans, identify clock-mediated pathways, and determine exercise-induced biomarkers that improve circadian and metabolic outcomes.

The team for

B04

The publications of

B04

Exploiting

Targeting

Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice

December 31, 2023

Background & aims: The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive.

Methods: To start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses.

Results: Comparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism-associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control.

Conclusions: NASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility.

Keywords: Circadian Bioinformatics; Circadian Clock; Circadian RNAseq; Energy Metabolism; Nonalcoholic Fatty Liver Disease (NAFLD).

Exploiting

Targeting

The role of the circadian clock in the development, progression, and treatment of non-alcoholic fatty liver disease

January 4, 2023

The circadian clock comprises a cellular endogenous timing system coordinating the alignment of physiological processes with geophysical time. Disruption of circadian rhythms has been associated with several metabolic diseases. In this review, we focus on liver as a major metabolic tissue and one of the most well-studied organs with regard to circadian regulation. We summarize current knowledge about the role of local and systemic clocks and rhythms in regulating biological functions of the liver. We discuss how the disruption of circadian rhythms influences the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). We also critically evaluate whether NAFLD/NASH may in turn result in chronodisruption. The last chapter focuses on potential roles of the clock system in prevention and treatment of NAFLD/NASH and the interaction of current NASH drug candidates with liver circadian rhythms and clocks. It becomes increasingly clear that paying attention to circadian timing may open new avenues for the optimization of NAFLD/NASH therapies and provide interesting targets for prevention and treatment of these increasingly prevalent disorders.

Keywords: NAFLD; NASH; chronotherapy; circadian rhythms; clock genes; liver; metabolic-associated fatty liver disease (MAFLD).